Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 391
Filtrar
1.
Cell Biol Toxicol ; 40(1): 23, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38630355

RESUMO

Cytosolic thiouridylase 2 (CTU2) is an enzyme modifying transfer RNAs post-transcriptionally, which has been implicated in breast cancer and melanoma development. And we found CTU2 participated in hepatocellular carcinoma (HCC) progression here. HepG2 cells as well as xenograft nude mice model were employed to investigate the role of CTU2 in HCC development in vitro and in vivo respectively. Further, we defined CTU2 as a Liver X receptor (LXR) targeted gene, with a typical LXR element in the CTU2 promoter. CTU2 expression was activated by LXR agonist and depressed by LXR knockout. Interestingly, we also found CTU2 took part in lipogenesis by directly enhancing the synthesis of lipogenic proteins, which provided a novel mechanism for LXR regulating lipid synthesis. Meanwhile, lipogenesis was active during cell proliferation, particularly in tumor cells. Reduction of CTU2 expression was related to reduced tumor burden and synergized anti-tumor effect of LXR ligands by inducing tumor cell apoptosis and inhibiting cell proliferation. Taken together, our study identified CTU2 as an LXR target gene. Inhibition of CTU2 expression could enhance the anti-tumor effect of LXR ligand in HCC, identifying CTU2 as a promising target for HCC treatment and providing a novel strategy for the application of LXR agonists in anti-tumor effect.


Assuntos
Neoplasias da Mama , Carcinoma Hepatocelular , Neoplasias Hepáticas , Animais , Camundongos , Humanos , Feminino , Carcinoma Hepatocelular/genética , Receptores X do Fígado/genética , Camundongos Nus , Neoplasias Hepáticas/genética , Modelos Animais de Doenças
2.
Clin Transl Med ; 14(4): e1665, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38649789

RESUMO

BACKGROUND: White matter injury (WMI) is an important pathological process after traumatic brain injury (TBI). The correlation between white matter functions and the myeloid cells expressing triggering receptor-2 (TREM2) has been convincingly demonstrated. Moreover, a recent study revealed that microglial sterol metabolism is crucial for early remyelination after demyelinating diseases. However, the potential roles of TREM2 expression and microglial sterol metabolism in WMI after TBI have not yet been explored. METHODS: Controlled cortical injury was induced in both wild-type (WT) and TREM2 depletion (TREM2 KO) mice to simulate clinical TBI. COG1410 was used to upregulate TREM2, while PLX5622 and GSK2033 were used to deplete microglia and inhibit the liver X receptor (LXR), respectively. Immunofluorescence, Luxol fast blue staining, magnetic resonance imaging, transmission electron microscopy, and oil red O staining were employed to assess WMI after TBI. Neurological behaviour tests and electrophysiological recordings were utilized to evaluate cognitive functions following TBI. Microglial cell sorting and transcriptomic sequencing were utilized to identify alterations in microglial sterol metabolism-related genes, while western blot was conducted to validate the findings. RESULTS: TREM2 expressed highest at 3 days post-TBI and was predominantly localized to microglial cells within the white matter. Depletion of TREM2 worsened aberrant neurological behaviours, and this phenomenon was mediated by the exacerbation of WMI, reduced renewal of oligodendrocytes, and impaired phagocytosis ability of microglia after TBI. Subsequently, the upregulation of TREM2 alleviated WMI, promoted oligodendrocyte regeneration, and ultimately facilitated the recovery of neurological behaviours after TBI. Finally, the expression of DHCR24 increased in TREM2 KO mice after TBI. Interestingly, TREM2 inhibited DHCR24 and upregulated members of the LXR pathway. Moreover, LXR inhibition could partially reverse the effects of TREM2 upregulation on electrophysiological activities. CONCLUSIONS: We demonstrate that TREM2 has the potential to alleviate WMI following TBI, possibly through the DHCR24/LXR pathway in microglia.


Assuntos
Lesões Encefálicas Traumáticas , Glicoproteínas de Membrana , Microglia , Receptores Imunológicos , Substância Branca , Animais , Lesões Encefálicas Traumáticas/metabolismo , Lesões Encefálicas Traumáticas/genética , Receptores Imunológicos/metabolismo , Receptores Imunológicos/genética , Microglia/metabolismo , Camundongos , Glicoproteínas de Membrana/metabolismo , Glicoproteínas de Membrana/genética , Substância Branca/metabolismo , Substância Branca/patologia , Receptores X do Fígado/metabolismo , Receptores X do Fígado/genética , Modelos Animais de Doenças , Masculino , Camundongos Knockout , Camundongos Endogâmicos C57BL
3.
Cell Rep ; 43(3): 113946, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38483902

RESUMO

The mechanisms by which genomic risks contribute to the onset of neuropsychiatric conditions remain a key challenge and a prerequisite for successful development of effective therapies. 15q11.2 copy number variation (CNV) containing the CYFIP1 gene is associated with autism and schizophrenia. Using stem cell models, we show that 15q11.2 deletion (15q11.2del) and CYFIP1 loss of function (CYFIP1-LoF) lead to premature neuronal differentiation, while CYFIP1 gain of function (CYFIP1-GoF) favors neural progenitor maintenance. CYFIP1 dosage changes led to dysregulated cholesterol metabolism and altered levels of 24S,25-epoxycholesterol, which can mimic the 15q11.2del and CYFIP1-LoF phenotypes by promoting cortical neuronal differentiation and can restore the impaired neuronal differentiation of CYFIP1-GoF neural progenitors. Moreover, the neurogenic activity of 24S,25-epoxycholesterol is lost following genetic deletion of liver X receptor (LXRß), while compound deletion of LXRß in CYFIP1-/- background rescued their premature neurogenesis. This work delineates LXR-mediated oxysterol regulation of neurogenesis as a pathological mechanism in neural cells carrying 15q11.2 CNV and provides a potential target for therapeutic strategies for associated disorders.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Transtorno Autístico , Humanos , Receptores X do Fígado/genética , Receptores X do Fígado/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Variações do Número de Cópias de DNA , Transtorno Autístico/genética , Células-Tronco/metabolismo , Neurogênese
4.
Sci Rep ; 14(1): 6409, 2024 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-38494538

RESUMO

Dysregulation of key transcription factors involved in hepatic energy metabolism, such as peroxisome proliferator-activated receptor gamma coactivator-1 alpha (PGC-1α) and liver X receptor alpha (LXRα), has been observed in T2DM. The present study aims to investigate the effects of aerobic training and vitamin D supplementation on liver enzyme levels and the levels of PGC-1α and LXRα proteins in hepatocytes, in a rat model of T2DM. The study involved 56 male Wistar rats, divided into two groups: one was non-diabetic and acted as a control group (n = 8), and the other had induced diabetes (n = 48). The diabetic rats were then split into six subgroups: two groups received high or moderate doses of vitamin D and aerobic training (D + AT + HD and D + AT + MD); two groups received high or moderate doses of vitamin D alone (D + HD and D + MD); one group underwent aerobic training with vehicle (sesame oil; D + AT + oil), and one group was a diabetic control receiving only sesame oil (oil-receiving). The D + AT + HD and D + HD groups received 10,000 IU of vitamin D, while the D + AT + MD and D + MD groups received 5000 IU of vitamin D once a week by injection. The D + AT + oil group and the sham group received sesame oil. After eight weeks of treatment, body weight, BMI, food intake, serum insulin, glucose, 25-hydroxyvitamin D, ALT, AST, and visceral fat were measured. The levels of PGC-1α and LXRα proteins in the liver was assessed by western blotting. Statistical analysis was performed using the paired t-test, one-way analysis of variance (ANOVA), and the Tukey post hoc test at a significance level of P < 0.05. Body weight, food intake, and BMI decreased significantly in the D + AT + HD, D + AT + MD, D + AT + oil, D + HD, and D + MD groups with the highest reduction being observed in body weight and BMI in the D + AT + HD group. The D + AT + HD group exhibited the lowest levels of insulin, glucose, and HOMA-IR while the D + C group exhibited the highest levels among the diabetic groups. The D + AT + HD and D + AT + MD groups had lower levels of ALT and AST enzymes compared to the other groups with no significant difference between D + AT + HD and D + AT + MD. D + AT + HD (p = 0.001), D + AT + MD (p = 0.001), D + HD (p = 0.023), D + MD (p = 0.029), and D + AT + oil (p = 0.011) upregulated LXRα compared to D + C. Among these groups, D + AT + HD exhibited a more profound upregulation of LXRα than D + AT + MD, D + AT + oil, D + HD, and D + MD (p = 0.005; p = 0.002, p = 0.001, and p = 0.001, respectively). Similarly, D + AT + HD showed a more notable upregulation of PGC-1α compared to D + AT + oil, D + HD, and D + MD (p = 0.002; p = 0.001, and p = 0.001, respectively). Pearson correlation tests showed significant and negative correlations between serum 25-hydroxyvitamin levels and both visceral fat (r = - 0.365; p = 0.005) and HOMA-IR (r = - 0.118; p = 0.009); while positive and significant correlations between the liver-to-bodyweight ratio with both ALT and AST enzymes and also between QUICKI levels with LXRα (r = 0.578; p = 0.001) and PGC-1α (r = 0.628; p = 0.001). Combined administration of aerobic training and vitamin D supplementation potentially improves liver enzymes in type-2 diabetic rats that were simultaneous with upregulating the levels of PGC-1α and LXRα proteins in hepatocytes. These improvements were more significant when combining exercise with high-dose vitamin D supplementation. This study highlights the potential of this combination therapy as a new diabetes treatment strategy.


Assuntos
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2 , Masculino , Ratos , Animais , Receptores X do Fígado/genética , Diabetes Mellitus Experimental/terapia , Óleo de Gergelim , Ratos Wistar , Vitamina D/farmacologia , Vitaminas , Insulina , Fígado , Peso Corporal , Glucose , Diabetes Mellitus Tipo 2/tratamento farmacológico
5.
Gene ; 909: 148302, 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38401833

RESUMO

Changes in circulating let-7c were significantly associated with the alter in lipid profile, but its role in intracellular lipid metabolism remains unknown. This work was conducted to explore the effects of let-7c on the lipid accumulation in macrophages and uncover the underlying mechanism. Our results showed that let-7c inhibition relieved atherosclerosis progression in apoE-/- mice. In ox-LDL-treatment macrophages, let-7c knockdown suppressed lipid accumulation but does no affect cholesterol intake. Consistent with this, overexpression of let-7c promoted lipid accumulation by reducing the expression of LXRα and ABCA1/G1. Mechanistically, let-7c targeted PGC-1α to repress the expression of LXRα and ABCA1/G1, thereby regulating cholesterol homeostasis in macrophages. Taken together, these findings suggest that antagonism of let-7c reduces atherosclerosis and macrophage lipid accumulation through the PGC-1α/LXRα/ABCA1/G1 axis.


Assuntos
Aterosclerose , Hipercolesterolemia , Animais , Camundongos , Colesterol/metabolismo , Macrófagos/metabolismo , Aterosclerose/genética , Aterosclerose/metabolismo , Hipercolesterolemia/metabolismo , Metabolismo dos Lipídeos/genética , Transportador 1 de Cassete de Ligação de ATP/genética , Transportador 1 de Cassete de Ligação de ATP/metabolismo , Receptores X do Fígado/genética , Receptores X do Fígado/metabolismo
6.
Int J Mol Sci ; 25(2)2024 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-38256272

RESUMO

Cornelian cherry (Cornus mas L.) fruits, abundant in iridoids and anthocyanins, are natural products with proven beneficial impacts on the functions of the cardiovascular system and the liver. This study aims to assess and compare whether and to what extent two different doses of resin-purified cornelian cherry extract (10 mg/kg b.w. or 50 mg/kg b.w.) applied in a cholesterol-rich diet rabbit model affect the levels of sterol regulatory element-binding protein 1c (SREBP-1c) and CCAAT/enhancer binding protein α (C/EBPα), and various liver X receptor-α (LXR-α), peroxisome proliferator-activated receptor-α (PPAR-α), and peroxisome proliferator-activated receptor-γ (PPAR-γ) target genes. Moreover, the aim is to evaluate the resistive index (RI) of common carotid arteries (CCAs) and aortas, and histopathological changes in CCAs. For this purpose, the levels of SREBP-1c, C/EBPα, ATP-binding cassette transporter A1 (ABCA1), ATP-binding cassette transporter G1 (ABCG1), fatty acid synthase (FAS), endothelial lipase (LIPG), carnitine palmitoyltransferase 1A (CPT1A), and adiponectin receptor 2 (AdipoR2) in liver tissue were measured. Also, the levels of lipoprotein lipase (LPL), visceral adipose tissue-derived serine protease inhibitor (Vaspin), and retinol-binding protein 4 (RBP4) in visceral adipose tissue were measured. The RI of CCAs and aortas, and histopathological changes in CCAs, were indicated. The oral administration of the cornelian cherry extract decreased the SREBP-1c and C/EBPα in both doses. The dose of 10 mg/kg b.w. increased ABCA1 and decreased FAS, CPT1A, and RBP4, and the dose of 50 mg/kg b.w. enhanced ABCG1 and AdipoR2. Mitigations in atheromatous changes in rabbits' CCAs were also observed. The obtained outcomes were compared to the results of our previous works. The beneficial results confirm that cornelian cherry fruit extract may constitute a potentially effective product in the prevention and treatment of obesity-related disorders.


Assuntos
Cornus , Lagomorpha , Extratos Vegetais , Animais , Coelhos , Antocianinas , Transportadores de Cassetes de Ligação de ATP , Proteína alfa Estimuladora de Ligação a CCAAT/genética , Cornus/química , Dieta , Frutas/química , Fígado , Receptores X do Fígado/genética , Extratos Vegetais/farmacologia , PPAR alfa/genética , PPAR gama/genética , Proteína de Ligação a Elemento Regulador de Esterol 1/genética
7.
Asian Pac J Cancer Prev ; 24(12): 4103-4109, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-38156844

RESUMO

OBJECTIVE: Pancreatic ductal adenocarcinoma (PDAC) has an unfavorable outlook due to its aggressive characteristics, delayed diagnosis, and limited effective treatment options for advanced stages of the disease. The significant mortality rate has prompted investigations into additional factors that could aid in managing this type of cancer. Liver X receptors, specifically LXRα and LXRß, are nuclear receptors that oversee the expression of genes related to cholesterol, glucose, lipid metabolism, and inflammatory responses. LXRs have also emerged as potential targets for addressing PDAC, and recent findings have demonstrated that LXR ligands can impede cell proliferation in various cancer forms, notably pancreatic cancer. This comprehensive computational research study involving oncological in silico mechanism discovery explored inhibitory ligands for Liver X receptors (LXRα and LXRß), which are believed to have prognostic significance in PDAC. METHODS: The study utilized Baicalein, Beta-Sitosterol, Polydatin ligands in molecular docking and dynamics and post-molecular Hydrogen bonding contact analyses dynamics to characterize receptor inhibition. RESULT: The outcomes suggest that Baicalein exhibits versatile inhibitory effects on both receptors, while Beta-Sitosterol emerges as a highly effective inhibitor of LXRß. CONCLUSION: Further in vitro and in vivo investigations will be beneficial and would shed light onto the mechanism to decipher the suppression of PDAC evaluating the potential of Baicalein, Beta-Sitosterol, Polydatin natural ligand compounds.


Assuntos
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Humanos , Receptores X do Fígado/genética , Simulação de Acoplamento Molecular , Receptores Nucleares Órfãos/genética , Receptores Nucleares Órfãos/metabolismo , Carcinoma Ductal Pancreático/tratamento farmacológico , Carcinoma Ductal Pancreático/genética , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/genética
8.
Cell Death Dis ; 14(11): 781, 2023 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-38016947

RESUMO

In Alzheimer's disease (AD) more than 50% of the patients are affected by capillary cerebral amyloid-angiopathy (capCAA), which is characterized by localized hypoxia, neuro-inflammation and loss of blood-brain barrier (BBB) function. Moreover, AD patients with or without capCAA display increased vessel number, indicating a reactivation of the angiogenic program. The molecular mechanism(s) responsible for BBB dysfunction and angiogenesis in capCAA is still unclear, preventing a full understanding of disease pathophysiology. The Liver X receptor (LXR) family, consisting of LXRα and LXRß, was reported to inhibit angiogenesis and particularly LXRα was shown to secure BBB stability, suggesting a major role in vascular function. In this study, we unravel the regulatory mechanism exerted by LXRα to preserve BBB integrity in human brain endothelial cells (BECs) and investigate its role during pathological conditions. We report that LXRα ensures BECs identity via constitutive inhibition of the transcription factor SNAI2. Accordingly, deletion of brain endothelial LXRα is associated with impaired DLL4-NOTCH signalling, a critical signalling pathway involved in vessel sprouting. A similar response was observed when BECs were exposed to hypoxia, with concomitant LXRα decrease and SNAI2 increase. In support of our cell-based observations, we report a general increase in vascular SNAI2 in the occipital cortex of AD patients with and without capCAA. Importantly, SNAI2 strongly associated with vascular amyloid-beta deposition and angiopoietin-like 4, a marker for hypoxia. In hypoxic capCAA vessels, the expression of LXRα may decrease leading to an increased expression of SNAI2, and consequently BECs de-differentiation and sprouting. Our findings indicate that LXRα is essential for BECs identity, thereby securing BBB stability and preventing aberrant angiogenesis. These results uncover a novel molecular pathway essential for BBB identity and vascular homeostasis providing new insights on the vascular pathology affecting AD patients.


Assuntos
Doença de Alzheimer , Angiopatia Amiloide Cerebral , Humanos , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Barreira Hematoencefálica/metabolismo , Angiopatia Amiloide Cerebral/complicações , Angiopatia Amiloide Cerebral/metabolismo , Angiopatia Amiloide Cerebral/patologia , Células Endoteliais/metabolismo , Hipóxia/metabolismo , Receptores X do Fígado/genética , Receptores X do Fígado/metabolismo , Fatores de Transcrição da Família Snail/genética , Fatores de Transcrição da Família Snail/metabolismo
9.
Ecotoxicol Environ Saf ; 266: 115605, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37864966

RESUMO

2-Ethylhexyl diphenyl phosphate (EHDPP) is one of the typical organophosphate flame retardants (OPFRs) and has been widely detected in environmental media. Exposure to EHDPP during pregnancy affects placental development and fetal growth. Liver X receptor α (LXRα) is essential to placental development. However, finite information is available regarding the function of LXRα in placenta damages caused by EHDPP. In present study we investigated to figure out whether LXRα is playing roles in EHDPP-induced placenta toxicity. While EHDPP restrained cell viability, migration, and angiogenesis dose-dependently in HTR-8/SVneo and JEG-3 cells, overexpression or activation by agonist T0901317 of LXRα alleviated the above phenomenon, knockdown or inhibition by antagonist GSK2033 had the opposite effects in vitro. Further study indicated EHDPP decreased LXRα expression and transcriptional activity leading to mRNA, protein expression levels downregulation of viability, migration, angiogenesis-related genes Forkhead box M1 (Foxm1), endothelial nitric oxide synthase (eNos), matrix metalloproteinase-2 (Mmp-2), matrix metalloproteinase-9 (Mmp-9), vascular endothelial growth factor-A (Vegf-a) and upregulation of inflammatory genes interleukin-6 (Il-6), interleukin-1ß (Il-1ß) and tumor necrosis factor-α (Tnf-α) in vitro and in vivo. Moreover, EHDPP caused decreased placental volume and fetal weight in mice, treatment with LXRα agonist T0901317 restored these adverse effects. Taken together, our study unveiled EHDPP-induced placenta toxicity and the protective role of LXRα in combating EHDPP-induced placental dysfunction. Activating LXRα could serve as a therapeutic strategy to reverse EHDPP-induced placental toxicity.


Assuntos
Metaloproteinase 2 da Matriz , Fosfatos , Feminino , Gravidez , Animais , Camundongos , Receptores X do Fígado/genética , Fator A de Crescimento do Endotélio Vascular , Linhagem Celular Tumoral , Placenta
10.
Biomolecules ; 13(8)2023 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-37627249

RESUMO

Liver X receptor α (LXRα), a member of the nuclear receptor superfamily, is identified as a protein activated by ligands that interacts with the promoters of specific genes. It regulates cholesterol, bile acid, and lipid metabolism in normal physiological processes, and it participates in the development of some related diseases. However, many studies have demonstrated that LXRα is also involved in regulating numerous human malignancies. Aberrant LXRα expression is emerging as a fundamental and pivotal factor in cancer cell proliferation, invasion, apoptosis, and metastasis. Herein, we outline the expression levels of LXRα between tumor tissues and normal tissues via the Oncomine and Tumor Immune Estimation Resource (TIMER) 2.0 databases; summarize emerging insights into the roles of LXRα in the development, progression, and treatment of different human cancers and their diversified mechanisms; and highlight that LXRα can be a biomarker and therapeutic target in diverse cancers.


Assuntos
Carcinogênese , Neoplasias , Humanos , Receptores X do Fígado/genética , Carcinogênese/genética , Transformação Celular Neoplásica , Neoplasias/tratamento farmacológico , Neoplasias/genética , Apoptose
11.
Nutrients ; 15(13)2023 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-37447330

RESUMO

The nuclear liver X receptors (LXRα/ß) and peroxisome proliferator-activated receptors (PPARα/γ) are involved in the regulation of multiple biological processes, including lipid metabolism and inflammation. The activation of these receptors has been found to have neuroprotective effects, making them interesting therapeutic targets for neurodegenerative disorders such as Alzheimer's Disease (AD). The Asian brown seaweed Sargassum fusiforme contains both LXR-activating (oxy)phytosterols and PPAR-activating fatty acids. We have previously shown that dietary supplementation with lipid extracts of Sargassum fusiforme prevents disease progression in a mouse model of AD, without inducing adverse effects associated with synthetic pan-LXR agonists. We now determined the LXRα/ß- and PPARα/γ-activating capacity of lipid extracts of six European brown seaweed species (Alaria esculenta, Ascophyllum nodosum, Fucus vesiculosus, Himanthalia elongata, Saccharina latissima, and Sargassum muticum) and the Asian seaweed Sargassum fusiforme using a dual luciferase reporter assay. We analyzed the sterol and fatty acid profiles of the extracts by GC-MS and UPLC MS/MS, respectively, and determined their effects on the expression of LXR and PPAR target genes in several cell lines using quantitative PCR. All extracts were found to activate LXRs, with the Himanthalia elongata extract showing the most pronounced efficacy, comparable to Sargassum fusiforme, for LXR activation and transcriptional regulation of LXR-target genes. Extracts of Alaria esculenta, Fucus vesiculosus, and Saccharina latissima showed the highest capacity to activate PPARα, while extracts of Alaria esculenta, Ascophyllum nodosum, Fucus vesiculosus, and Sargassum muticum showed the highest capacity to activate PPARγ, comparable to Sargassum fusiforme extract. In CCF-STTG1 astrocytoma cells, all extracts induced expression of cholesterol efflux genes (ABCG1, ABCA1, and APOE) and suppressed expression of cholesterol and fatty acid synthesis genes (DHCR7, DHCR24, HMGCR and SREBF2, and SREBF1, ACACA, SCD1 and FASN, respectively). Our data show that lipophilic fractions of European brown seaweeds activate LXRs and PPARs and thereby modulate lipid metabolism. These results support the potential of brown seaweeds in the prevention and/or treatment of neurodegenerative diseases and possibly cardiometabolic and inflammatory diseases via concurrent activation of LXRs and PPARs.


Assuntos
Doença de Alzheimer , Alga Marinha , Camundongos , Animais , Receptores X do Fígado/genética , Receptores X do Fígado/metabolismo , Doença de Alzheimer/tratamento farmacológico , PPAR alfa/genética , Espectrometria de Massas em Tandem , Receptores Citoplasmáticos e Nucleares/genética , Colesterol/metabolismo , Ácidos Graxos/metabolismo
12.
Eur Rev Med Pharmacol Sci ; 27(13): 6319-6331, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37458649

RESUMO

OBJECTIVE: Preeclampsia (PE) is a complex disease-causing multisystem damage. Many genes, environmental factors, and their interactions are involved in the development and progression of PE. The pathogenesis of PE is not fully understood, limiting the prevention and treatment of PE. The aim of this study was to investigate the effect of 4,4'-diisothiocyanato-stilbene-2,2'-disulfonic acid (DIDS), an ATP-binding cassette transporter A1 (ABCA1) blocker, on apoM mRNA and protein levels. PATIENTS AND METHODS: The role of liver X receptor α (LXRα) and ABCA1 in the pathogenesis of PE was investigated by optimizing the design of DIDS inhibition based on a deep learning model. RESULTS: The proportion of primipara in the research group, EOPE group, LOPE group, and controls was 59.82%, 65.85%, 56.34%, and 21.43%, respectively. The difference between the research group and the controls was statistically significant (p<0.01). In the clinical data, serum-free triiodothyronine (FT3), gestational age at delivery, high-density lipoprotein cholesterol (HDL-C), hemoglobin (HGB), albumin, and platelet (PLT) in the research group were lower than those in the controls (p<0.05). CONCLUSIONS: ABCA1 is considered to affect apoM mRNA expression, G/HDL-C may increase the risk of LOPE, and overweight or obesity, abnormal glycemic regulation, and hypothyroidism are independent risk factors closely related to the pathogenesis of PE and its subgroups.


Assuntos
Aprendizado Profundo , Pré-Eclâmpsia , Feminino , Humanos , Receptores X do Fígado/genética , Receptores X do Fígado/metabolismo , Receptores Nucleares Órfãos/genética , Receptores Nucleares Órfãos/metabolismo , Transportadores de Cassetes de Ligação de ATP/genética , HDL-Colesterol , RNA Mensageiro/metabolismo , Transportador 1 de Cassete de Ligação de ATP/genética
13.
Int J Biol Sci ; 19(9): 2848-2859, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37324952

RESUMO

Liver X receptors (LXRαß) play essential roles in the maintenance of the normal functions of macrophages, in modulation of immune system responses and cholesterol homeostasis. We have reported that LXRαß-/- mice develop squamous cell lung cancer. We now report that those LXRαß-/- mice, which live to 18-months of age, spontaneously develop a second type of lung cancer resembling a rare subtype of NSCLC (TTF-1 and P63-positive). The lesions are characterized as follows: a high proliferation rate; a marked accumulation of abnormal macrophages; an increase in the number of regulatory T cells; a remarkably low level of CD8+ cytotoxic T lymphocytes; enhanced TGFß signaling; an increased expression of matrix metalloproteinases accompanied by degradation of lung collagen; and a loss of estrogen receptor ß (ERß). Because NSCLC is associated with cigarette smoking, we investigated the possible links between loss of LXRαß and CS. A Kaplan-Meier Plotter database revealed reduced expression of LXRαß and ERß was correlated with low overall survival (OS). Thus, reduction of LXRαß expression by cigarette smoking may be one mechanism through which CS causes lung cancer. The possibility that maintenance of LXRαß and ERß signaling could be used in the treatment of NSCLC needs further investigation.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Camundongos , Animais , Receptor beta de Estrogênio/genética , Receptor beta de Estrogênio/metabolismo , Receptores X do Fígado/genética , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Neoplasias Pulmonares/metabolismo , Pulmão/metabolismo
15.
J Med Food ; 26(5): 307-318, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37186895

RESUMO

The berries of Juniperus communis have been traditionally used for therapeutic purposes. They have been reported to possess various pharmacological effects such as anti-inflammatory, hypoglycemic and hypolipidemic activities. In this study, a methanolic extract of J. communis berries (JB) was evaluated for its effects on peroxisome proliferator-activated receptors alpha and gamma (PPARα and PPARγ), liver X receptor (LXR), glucose uptake and lipid accumulation using various cellular systems. At a concentration of 25 µg/mL, JB caused 3.77-fold activation of PPARα, 10.90-fold activation of PPARγ, and 4.43-fold activation of LXR in hepatic cells. JB inhibited (11%) the adipogenic effect induced by rosiglitazone in adipocytes and increased glucose uptake (90%) in muscle cells. In high-fat diet (HFD) fed mice, JB at a dose of 25 mg/kg body weight exhibited a 21% decrease in body weight. Fasting glucose levels in mice treated with 12.5 mg/kg of JB were significantly decreased (39%) indicating its efficacy in regulating hyperglycemia and obesity induced by HFD thus ameliorating the symptoms of type 2 diabetes. A series of energy metabolic genes, including Sirt1 (2.00-fold) and RAF1 (2.04-fold), were upregulated by JB, while rosiglitazone regulated the hepatic PPARγ only. Phytochemical analysis of JB indicated presence of a number of flavonoids and biflavonoids which seem to be responsible for the observed activity. It was concluded that JB acted as a multiple agonist of PPARα, PPARγ and LXR without the undesired effect of adipogenesis and exhibited the property of enhancing glucose uptake. The regulation of PPARα, PPARγ and LXR seems to be through Sirt1 and RAF1. In vivo results confirmed the antidiabetic and antiobesity potential of JB and indicated its utility in metabolic disorder and type 2 diabetes.


Assuntos
Diabetes Mellitus Tipo 2 , Juniperus , Animais , Camundongos , Peso Corporal , Diabetes Mellitus Tipo 2/tratamento farmacológico , Frutas/metabolismo , Glucose/metabolismo , Hipoglicemiantes/farmacologia , Hipoglicemiantes/uso terapêutico , Juniperus/metabolismo , Receptores X do Fígado/genética , Receptores X do Fígado/uso terapêutico , Camundongos Endogâmicos C57BL , Obesidade/tratamento farmacológico , Obesidade/genética , PPAR alfa/genética , PPAR alfa/metabolismo , PPAR gama/genética , PPAR gama/metabolismo , Rosiglitazona/uso terapêutico , Sirtuína 1
16.
Breast Cancer Res ; 25(1): 41, 2023 04 14.
Artigo em Inglês | MEDLINE | ID: mdl-37059993

RESUMO

BACKGROUND: Cell adhesion is indispensable for appropriate tissue architecture and function in multicellular organisms. Besides maintaining tissue integrity, cell adhesion molecules, including tight-junction proteins claudins (CLDNs), exhibit the signaling abilities to control a variety of physiological and pathological processes. However, it is still fragmentary how cell adhesion signaling accesses the nucleus and regulates gene expression. METHODS: By generating a number of knockout and rescued human breast cell lines and comparing their phenotypes, we determined whether and how CLDN4 affected breast cancer progression in vitro and in vivo. We also identified by RNA sequencing downstream genes whose expression was altered by CLDN4-adhesion signaling. Additionally, we analyzed by RT-qPCR the CLDN4-regulating genes by using a series of knockout and add-back cell lines. Moreover, by immunohistochemistry and semi-quantification, we verified the clinicopathological significance of CLDN4 and the nuclear receptor LXRß (liver X receptor ß) expression in breast cancer tissues from 187 patients. RESULTS: We uncovered that the CLDN4-adhesion signaling accelerated breast cancer metabolism and progression via LXRß. The second extracellular domain and the carboxy-terminal Y197 of CLDN4 were required to activate Src-family kinases (SFKs) and the downstream AKT in breast cancer cells to promote their proliferation. Knockout and rescue experiments revealed that the CLDN4 signaling targets the AKT phosphorylation site S432 in LXRß, leading to enhanced cell proliferation, migration, and tumor growth, as well as cholesterol homeostasis and fatty acid metabolism, in breast cancer cells. In addition, RT-qPCR analysis showed the CLDN4-regulated genes are classified into at least six groups according to distinct LXRß- and LXRßS432-dependence. Furthermore, among triple-negative breast cancer subjects, the "CLDN4-high/LXRß-high" and "CLDN4-low and/or LXRß-low" groups appeared to exhibit poor outcomes and relatively favorable prognoses, respectively. CONCLUSIONS: The identification of this machinery highlights a link between cell adhesion and transcription factor signalings to promote metabolic and progressive processes of malignant tumors and possibly to coordinate diverse physiological and pathological events.


Assuntos
Proteínas Proto-Oncogênicas c-akt , Neoplasias de Mama Triplo Negativas , Humanos , Claudina-4/genética , Claudina-4/metabolismo , Receptores X do Fígado/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Claudinas/genética , Claudinas/metabolismo , Neoplasias de Mama Triplo Negativas/patologia , Linhagem Celular Tumoral
17.
Lipids Health Dis ; 22(1): 51, 2023 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-37061692

RESUMO

BACKGROUND: The long-term excessive intake of exogenous cholesterol can lead to abnormally elevated blood lipid levels and induce cardiovascular and cerebrovascular diseases. However, the influence and relevance of exogenous cholesterol on plasma cholesterol components were still unclear, and the influence on intestinal lipid metabolism targets needs to be further explored. METHODS: In vivo, the C57BL/6 + NF group and ApoE-/- + NF group mice were fed a normal specific pathogen-free (SPF) diet; the ApoE-/- + HF group mice were fed a high-cholesterol SPF diet. The plasma and jejunum tissue homogenate were obtained for non-targeted lipid metabolomics. The lipid droplets in tissues were observed by transmission electron microscope and oil red O staining. Jejunum tissue morphology was observed by HE staining. The kits were used to detect lipid content in plasma, tissues, intestinal contents, and cells. Western blot, RT-PCR, immunohistochemistry (IHC), and immunofluorescence (IF) were used to observe the key target of lipid metabolism. In vitro, the final concentration of cholesterol was 100 µmol/L in Caco-cells. Oil red O staining, western blot, RT-PCR and immunofluorescence (IF) were used to observe the changes of lipid metabolism. Finally, the influence of liver X receptor alpha (LXRα) on intestinal cholesterol metabolism was clarified by applying the LXRα inhibitor GSK2033 and siRNA targeting LXRα. RESULTS: The aortic arch and intestinal villi of the two groups of ApoE-/- mice showed apparent lesions and lipid accumulation, and there were significant changes in a variety of lipids in the plasma and jejunum. Additionally, jejunum LXRα was markedly activated. High cholesterol can significantly activate LXRα in Caco-2 cells. After LXRα was inhibited, the protein level of ATP-binding cassette transporter A1/G5/G8 (ABCA1/G5/G8) decreased, and the quantity and volume of intracellular lipids soared. CONCLUSION: In a high-cholesterol environment, the intestine promotes the excretion of cholesterol from the cell through the LXRα-ABCA1/G5/G8 pathway, reduces the intestinal intake of a variety of exogenous cholesterol, and reduces the risk of AS.


Assuntos
Aterosclerose , Hipercolesterolemia , Humanos , Animais , Camundongos , Receptores X do Fígado/genética , Receptores X do Fígado/metabolismo , Células CACO-2 , Camundongos Endogâmicos C57BL , Colesterol/metabolismo , Aterosclerose/patologia , Transdução de Sinais , Lipídeos , Apolipoproteínas E/genética , Apolipoproteínas E/metabolismo , Intestinos , Transportador 1 de Cassete de Ligação de ATP/genética
18.
Int J Mol Sci ; 24(6)2023 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-36983062

RESUMO

Neuroinflammation and brain lipid imbalances are observed in Alzheimer's disease (AD). Tumor necrosis factor-α (TNFα) and the liver X receptor (LXR) signaling pathways are involved in both processes. However, limited information is currently available regarding their relationships in human brain pericytes (HBP) of the neurovascular unit. In cultivated HBP, TNFα activates the LXR pathway and increases the expression of one of its target genes, the transporter ATP-binding cassette family A member 1 (ABCA1), while ABCG1 is not expressed. Apolipoprotein E (APOE) synthesis and release are diminished. The cholesterol efflux is promoted, but is not inhibited, when ABCA1 or LXR are blocked. Moreover, as for TNFα, direct LXR activation by the agonist (T0901317) increases ABCA1 expression and the associated cholesterol efflux. However, this process is abolished when LXR/ABCA1 are both inhibited. Neither the other ABC transporters nor the SR-BI are involved in this TNFα-mediated lipid efflux regulation. We also report that inflammation increases ABCB1 expression and function. In conclusion, our data suggest that inflammation increases HBP protection against xenobiotics and triggers an LXR/ABCA1 independent cholesterol release. Understanding the molecular mechanisms regulating this efflux at the level of the neurovascular unit remains fundamental to the characterization of links between neuroinflammation, cholesterol and HBP function in neurodegenerative disorders.


Assuntos
Pericitos , Fator de Necrose Tumoral alfa , Humanos , Receptores X do Fígado/genética , Receptores X do Fígado/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Pericitos/metabolismo , Receptores Nucleares Órfãos/genética , Doenças Neuroinflamatórias , Colesterol/metabolismo , Transdução de Sinais , Encéfalo/metabolismo , Transportador 1 de Cassete de Ligação de ATP/genética , Transportador 1 de Cassete de Ligação de ATP/metabolismo
19.
Cell Mol Life Sci ; 80(4): 96, 2023 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-36930354

RESUMO

Monocyte-derived macrophages contribute to pathogenesis in inflammatory diseases and their effector functions greatly depend on the prevailing extracellular milieu. Whereas M-CSF primes macrophages for acquisition of an anti-inflammatory profile, GM-CSF drives the generation of T cell-stimulatory and pro-inflammatory macrophages. Liver X Receptors (LXRα and LXRß) are nuclear receptors that control cholesterol metabolism and regulate differentiation of tissue-resident macrophages. Macrophages from rheumatoid arthritis and other inflammatory pathologies exhibit an enriched LXR pathway, and recent reports have shown that LXR activation raises pro-inflammatory effects and impairs the acquisition of the anti-Inflammatory profile of M-CSF-dependent monocyte-derived macrophages (M-MØ). We now report that LXR inhibition prompts the acquisition of an anti-inflammatory gene and functional profile of macrophages generated within a pathological environment (synovial fluid from Rheumatoid Arthritis patients) as well as during the GM-CSF-dependent differentiation of human monocyte-derived macrophages (GM-MØ). Mechanistically, inhibition of LXR results in macrophages with higher expression of the v-Maf Avian Musculoaponeurotic Fibrosarcoma Oncogene Homolog B (MAFB) transcription factor, which governs the macrophage anti-inflammatory profile, as well as over-expression of MAFB-regulated genes. Indeed, gene silencing experiments on human macrophages evidenced that MAFB is required for the LXR inhibitor to enhance the anti-inflammatory nature of human macrophages. As a whole, our results demonstrate that LXR inhibition prompts the acquisition of an anti-inflammatory transcriptional and functional profile of human macrophages in a MAFB-dependent manner, and propose the use of LXR antagonists as potential therapeutic alternatives in macrophage re-programming strategies during inflammatory responses.


Assuntos
Artrite Reumatoide , Fator Estimulador de Colônias de Granulócitos e Macrófagos , Humanos , Fator Estimulador de Colônias de Granulócitos e Macrófagos/farmacologia , Fator Estimulador de Colônias de Macrófagos/genética , Regulação para Cima , Macrófagos/metabolismo , Artrite Reumatoide/patologia , Anti-Inflamatórios/metabolismo , Receptores X do Fígado/genética , Receptores X do Fígado/metabolismo , Fator de Transcrição MafB/genética , Fator de Transcrição MafB/metabolismo
20.
Biosci Biotechnol Biochem ; 87(6): 584-591, 2023 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-36881721

RESUMO

Dyslipidemia is a risk factor for the development of atherosclerotic cardiovascular disease. 8-Hydroxyeicosapentaenoic acid (8-HEPE) from North Pacific krill (Euphausia pacifica) is known to reduce plasma low-density lipoprotein (LDL) cholesterol levels and increase plasma high-density lipoprotein cholesterol levels in LDL receptor knock-out mice fed a western diet. Moreover, 8-HEPE also reduces the area of aortic atherosclerosis in apoE knock-out mice fed the same diet. In this study, we examined the stereochemical-specific activity of 8-HEPE for inducing expression of cholesterol efflux receptors (Abca1 and Abcg1) in J774.1 cells. Our findings show 8R-HEPE induces the expression of Abca1 and Abcg1 via activation of liver X receptor, whereas 8S-HEPE elicits no such activity. These results suggest that 8R-HEPE derived from North Pacific krill may have beneficial effects against dyslipidemia.


Assuntos
Colesterol , Macrófagos , Camundongos , Animais , Receptores X do Fígado/genética , Receptores X do Fígado/metabolismo , Colesterol/metabolismo , Macrófagos/metabolismo , Lipoproteínas LDL/metabolismo , Camundongos Knockout , Transportador 1 de Cassete de Ligação de ATP/genética , Transportador 1 de Cassete de Ligação de ATP/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...